; Q =\(\frac{2}{x+1}\)
Giải:
Bước 1: Tìm mẫu thức chung.
Phân tích các mẫu thức thành nhân tử:
BCNN(x, x + 1) = x(x + 1)
Bước 2: Tìm nhân tử phụ.
Nhân tử phụ của P: x + 1
Nhân tử phụ của Q: x
Bước 3: Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
\(P = 1 \times \frac{x + 1}{x} \times (x + 1) = \frac{x + 1}{x(x + 1)}\) \(Q = 2 \times \frac{x}{x + 1} \times x = \frac{2x^2}{x(x + 1)}\)Vậy:
\(P = \frac{x + 1}{x(x + 1)}\) \(Q = \frac{2x^2}{x(x + 1)}\)Tìm mẫu thức chung:
Tìm nhân tử phụ của mỗi phân thức:
Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng:
Lưu ý:
Ví dụ:
Quy đồng mẫu thức các phân thức:
P = \(\frac{1}{x}\); Q = \(\frac{2}{x+1}\); R = \(\frac{3}{x^2+2x+1}\)
Giải:
Bước 1: Tìm mẫu thức chung.
Bước 2: Tìm nhân tử phụ.
Bước 3: Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Vậy:
\(P = \frac{{(x + 1)^2}}{{x(x + 1)^2}}\) \(Q = \frac{{2x^2}}{{(x + 1)^2}}\) \(R = \frac{{3x^2}}{{(x + 1)^2}}\)Tính chất 1:
Quy đồng mẫu thức không thay đổi giá trị của phân thức.
Ví dụ:
Quy đồng mẫu thức các phân thức:
P = \(\frac{1}{x}\); Q = \(\frac{2}{x+1}\)
Giải:
Bước 1: Tìm mẫu thức chung.
Bước 2: Tìm nhân tử phụ.
Bước 3: Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
Vậy:
\(P = \frac{{x + 1}}{{x(x + 1)}}\) \(Q = \frac{{2x^2}}{{x(x + 1)}}\)Ta có:
P = Q <=> \(\frac{{(x + 1)}}{{x(x + 1)}} = \frac{{2x^2}}{{x(x + 1)}}\)
<=> x + 1 = \(2x^2\)
<=> \(2x^2 – x – 1\) = 0
<=> (2x + 1)(x – 1) = 0
<=> x = -1/2 hoặc x = 1
Ta thấy:
Tính chất 2:
Khi quy đồng mẫu thức nhiều phân thức, ta có thể chọn mẫu thức chung là BCNN của các mẫu thức đã cho hoặc một mẫu thức chung khác lớn hơn BCNN.
Ví dụ:
Quy đồng mẫu thức các phân thức
P = \(\frac{1}{x}\)
; Q =\(\frac{2}{x+1}\)
Giải:
Cách 1: Chọn mẫu thức chung là BCNN(x, x + 1) = x(x + 1).
Cách 2: Chọn mẫu thức chung là \(x^2(x + 1)\).
Ta thấy:
Tính chất 3:
Khi cộng (trừ) hai phân thức có cùng mẫu thức, ta chỉ cần cộng (trừ) các tử thức và giữ nguyên mẫu thức.
Ví dụ:
Cho hai phân thức:
Tính P + Q.
Giải:
P + Q = \(\frac{{x + 1}}{{x(x + 1)}} + \frac{{2x^2}}{{x(x + 1)}}\)
= \(\frac{{x + 1 + 2x^2}}{{x(x + 1)}}\)
= \(\frac{{2x^2 + x + 1}}{{x(x + 1)}}\)
Tính chất 4:
Khi nhân (chia) hai phân thức, ta nhân (chia) các tử thức với nhau và nhân (chia) các mẫu thức với nhau.
Ví dụ:
Cho hai phân thức:
Quy đồng mẫu thức các phân thức:
\(P = \frac{1}{x}\) ; \(R = \frac{3}{{x^2 + 2x + 1}}\) ; \(R = \frac{3}{{x^2 + 2x + 1}}\)
Giải:
Bước 1: Tìm mẫu thức chung.
Bước 2: Tìm nhân tử phụ.
Bước 3: Nhân cả tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng.
\(P = \frac{{1 \cdot (x + 1)^2}}{{x \cdot (x + 1)^2}} = \frac{{(x + 1)^2}}{{x(x + 1)^2}}
\)
\(R = \frac{{3x}}{{(x + 1)^2}} \cdot x = \frac{{3x^2}}{{(x + 1)^2}}\)
Vậy:
\(P = \frac{{(x + 1)^2}}{{x(x + 1)^2}}\)
\(Q = \frac{{2x^2}}{{(x + 1)^2}}\)
\(R = \frac{{3x^2}}{{(x + 1)^2}}\)
Hy vọng rằng bài viết này đã giúp các bạn hiểu rõ cách quy đồng mẫu thức nhiều phân thức. Việc quy đồng mẫu thức là một kỹ năng quan trọng trong toán học, giúp ta giải quyết nhiều dạng bài tập khác nhau. Các bạn hãy luyện tập thường xuyên để nâng cao kỹ năng này.