Công thức phương trình mặt phẳnglà một công cụ toán học quan trọng giúp ta xác định vị trí, tính toán diện tích, thể tích và giải quyết các bài toán liên quan đến mặt phẳng trong không gian.
$$Ax + By + Cz + D = 0$$
trong đó:
A, B, C là các số thực (không đồng thời bằng 0)
D là số thực
(x, y, z) là tọa độ của một điểm M thuộc mặt phẳng
Mặt phẳng đi qua điểm M(x₀, y₀, z₀) và có vectơ pháp tuyến n = (a, b, c) có phương trình:
$$(x – x₀)a + (y – y₀)b + (z – z₀)c = 0$$
Mặt phẳng đi qua ba điểm M(x₁, y₁, z₁), N(x₂, y₂, z₂) và P(x₃, y₃, z₃) có phương trình:
\begin{matrix} x – x_1 & y – y_1 & z – z_1 \ x_2 – x_1 & y_2 – y_1 & z_2 – z_1 \ x_3 – x_1 & y_3 – y_1 & z_3 – z_1= 0 \end{matrix}
Mặt phẳng đi qua điểm M(x₀, y₀, z₀) và song song với mặt phẳng (P): Ax + By + Cz + D = 0 có phương trình:
$$Ax + By + Cz + D’ = 0$$
trong đó D’ = Ax₀ + By₀ + Cz₀
Mặt phẳng cắt ba trục tọa độ Ox, Oy, Oz tại các điểm A, B, C sao cho OA = a, OB = b, OC = c có phương trình:
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$
Lưu ý:
Vectơ pháp tuyến của mặt phẳng có tọa độ (A, B, C)
Mặt phẳng có hai vectơ pháp tuyến cùng phương sẽ có cùng phương trình.
Có thể sử dụng các phần mềm toán học để viết phương trình mặt phẳng.
Ví dụ:
Giải:
Phương trình mặt phẳng có dạng:
\((x – 1)2 + (y – 2)1 + (z – 3)(-1) = 0\)
Giải:
Phương trình mặt phẳng có dạng:
\begin{matrix} x – 1 & y – 2 & z – 3 \ 1 & 2 & -2 \ 2 & 3 & -1= 0 \end{matrix}
Giải:
Phương trình mặt phẳng có dạng:
\(2x + 3y + 4z + D = 0\)
D = 2 * 1 + 3 * 2 + 4 * 3 = 23
Vậy phương trình mặt phẳng là: 2x + 3y + 4z + 23 = 0.
Bài 1: Viết phương trình mặt phẳng song song với mặt phẳng (P): 2x + 3y – z + 5 = 0 và đi qua điểm M(1, 2, 3).
Giải:
Phương trình mặt phẳng song song với mặt phẳng (P):
2x + 3y – z + D = 0
M(1, 2, 3) thuộc mặt phẳng nên ta có:
2(1) + 3(2) – 3 + D = 0
=> D = -8
Vậy phương trình mặt phẳng là:
2x + 3y – z – 8 = 0
Bài 2: Viết phương trình mặt phẳng cắt ba trục tọa độ tại A(2, 0, 0), B(0, 3, 0) và C(0, 0, 4).
Giải:
Phương trình mặt phẳng cắt ba trục tọa độ tại A(2, 0, 0), B(0, 3, 0) và C(0, 0, 4) là:
\(\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1\)6x + 4y + 3z – 12 = 0
Bài viết đã cung cấp cho bạn đầy đủ các công thức phương trình mặt phẳng thường gặp trong chương trình Toán lớp 12. Hy vọng những thông tin này hữu ích cho bạn và giúp bạn giải quyết tốt các bài toán liên quan đến mặt phẳng.
Chúc bạn học tốt với toanhoc.edu.vn
Address: 148/9 Ung Văn Khiêm, Phường 25, Bình Thạnh, Thành phố Hồ Chí Minh, Việt Nam
Phone: 0988584696
E-Mail: contact@toanhoc.edu.vn