Các bước khảo sát và vẽ đồ thị hàm số bao gồm các bước chung và các bước khảo sát và vẽ đồ thị cho từng loại đồ thị hàm số gồm đồ thị hàm bậc ba, đồ thị hàm trùng phương, đồ thị hàm bậc nhất trên bậc nhất

I- SƠ ĐỒ CHUNG KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ.Bạn đang xem : Các bước khảo sát hàm số

1. Tập xác định.2. Sự biến thiên

2.1 Xét chiều biến thiên của hàm số+ Tính đạo hàm y’

+ Tìm những điểm mà tại đó đạo hàm y ’ bằng 0 hoặc không xác lập+ Xét dấu đạo hàm y ’ và suy ra chiều biến thiên của hàm số .

2.2 Tìm cực trị

2.3 Tìm các giới hạn tại vô cực (), các giới hạn có kết quả là vô cực () và tìm tiệm cận nếu có.

2.4 Lập bảng biến thiên.

Thể hiện rất đầy đủ và đúng mực những giá trị trên bảng biến thiên .

3. Đồ thị

– Giao của đồ thị với trục Oy : x = 0 => y = ? => ( 0 ; ? )- Giao của đồ thị với trục Ox : – Các điểm CĐ ; CT nếu có .

(Chú ý: nếu nghiệm bấm máy tính được thì OK, nghiệm lẻ giải tay được thì phải giải ra- chẳng hạn phương trình bậc 2, còn nghiệm lẽ mà không giải được thì ghi ra giấy nháp cho biết giá trị để khi vẽ cho chính xác- không ghi trong bài- chẳng hạn hàm bậc 3)

– Lấy thêm một số ít điểm ( nếu cần ) – ( điều này làm sau khi tưởng tượng hình dạng của đồ thị. Thiếu bên nào học viên lấy điểm phía bên đó, không lấy tùy tiện mất thời hạn. )- Nhận xét về đặc trưng của đồ thị. Điều này sẽ đơn cử hơn khi đi vẽ từng đồ thị hàm số .

#Dáng điệu của đồ thị là dáng điệu của bảng biến thiên

II- SƠ ĐỒ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM BẬC BA: y = ax3 + bx2 + cx + d (a khác 0)  .Xem thêm : Bảng Giá Dịch Vụ Marketing Online Giá Rẻ, Bảng Giá Dịch Vụ Marketing Online Tổng Thể

1. Tập xác định. D=R

2. Sự biến thiên2.1 Xét chiều biến thiên của hàm số

+ Tính đạo hàm :+ ( Bấm máy tính nếu nghiệm chẵn, giải nếu nghiệm lẻ – không được ghi nghiệm gần đúng )

+ Xét dấu đạo hàm y’ và suy ra chiều biến thiên của hàm số.

2.2 Tìm cực trị

2.3 Tìm các giới hạn tại vô cực ()

(Hàm bậc ba và các hàm đa thức không có TCĐ và TCN.)

2.4 Lập bảng biến thiên.

Thể hiện khá đầy đủ và đúng chuẩn những giá trị trên bảng biến thiên .

3. Đồ thị

– Giao của đồ thị với trục Oy : x = 0 => y = d => ( 0 ; d )- Giao của đồ thị với trục Ox :- Các điểm CĐ ; CT nếu có .

(Chú ý: nếu nghiệm bấm máy tính được 3 nghiệm thì OK, còn nếu được 1 nghiệm nguyên thì phải đưa về tích của một hàm bậc nhất và một hàm bậc hai để giải nghiệm. Trường hợp cả ba nghiệm đều lẻ thì chỉ ghi ra ở giấy nháp để phục vụ cho việc vẽ đồ thị)

– Lấy thêm một số ít điểm ( nếu cần ) – ( điều này làm sau khi tưởng tượng hình dạng của đồ thị. Thiếu bên nào học viên lấy điểm phía bên đó, không lấy tùy tiện mất thời hạn. )

– Nhận xét về đặc trưng của đồ thị. Hàm bậc ba nhận điểm  làm tâm đối xứng.

+ Trong đó : x0 là nghiệm của phương trình y ’ ’ = 0 ( đạo hàm cấp hai bằng 0 )

+ Điểm I được gọi là ‘điểm uốn’ của đồ thị hàm số.

=> Các dạng đồ thị hàm số bậc 3: y = ax3 + bx2 + cx + d (a khác 0)

*

BÀI TẬP LUYỆN VẼ ĐỒ THỊ HÀM SỐ BẬC 3

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

*

III. SƠ ĐỒ KHẢO SÁT VÀ VẼ ĐT HÀM SỐ TRÙNG PHƯƠNG y = ax4 + bx2 + c (a khác 0)

IV. SƠ ĐỒ KHẢO SÁT VÀ VẼ ĐT HÀM SỐ y =(ax + b)/(cx+d) – c khác 0, ad- bc khác 0

Xem và tải toàn bộ bài này theo link dưới dây

Tải về

Luyện Bài tập trắc nghiệm môn Toán lớp 12 – Xem ngay

Đánh giá bài viết