Ôn thi vào lớp 10 môn Toán

Tài liệu ôn thi vào lớp 10 môn Toán là tài liệu ôn thi vào lớp 10 tìm hiểu thêm cho những bạn học viên lớp 9. Tài liệu ôn thi vào lớp 10 môn Toán này do thầy Vũ Văn Bắc biên soạn, dành cho những bạn học viên lớp 9 nghiên cứu và điều tra, mạng lưới hệ thống củng cố kỹ năng và kiến thức Toán 9 cũng như luyện đề, bài tập nhằm mục đích có những cách giải toán được nhanh nhất, mưu trí nhất, giúp những bạn ôn thi môn Toán vào lớp 10 được hiệu suất cao cao.

VẤN ĐỀ 1. RÚT GỌN BIỂU THỨC CÓ CHỨA CĂN

A. PHƯƠNG PHÁP GIẢI TOÁN

Bài toán 1.1 Cho biểu thức: Tài liệu ôn thi vào lớp 10 môn Toán

a) Rút gọn biểu thức P

b ) Tìm x khi P = 0 ( Trích đề thi tuyển sinh vào lớp 10 tỉnh Tỉnh Nam Định năm 2011 )

Lời giải:

Tài liệu ôn thi vào lớp 10 môn Toán

b ) Với x ≥ 0, x ≠ 1 ta có P = 0 ↔ x – 2 √ x = 0 ↔ √ x. ( √ x – 2 ) = 0 ↔ √ x = 0 hoặc √ x – 2 = 0 ↔ x = 0 hoặc √ x = 2 ↔ x = 0 hoặc x = 4 Đối chiếu với điều kiện kèm theo x ≥ 0, x ≠ 1 ta thấy hai giá trị này đều thỏa mãn nhu cầu. Vậy với P = 0 thì x = 0, x = 4.

NHỮNG ĐIỂM CẦN LƯU Ý KHI GIẢI TOÁN:

* Kĩ năng cũng như cách giải chung cho dạng toán như câu a

  • Đặt điều kiện thích hợp, nếu đề bài đã nêu điều kiện xác định thì ta vẫn phải chỉ ra trong bài làm của mình như lời giải nêu trên.
  • Đa phần các bài toán dạng này, chúng ta thường quy đồng mẫu, xong rồi tính toán rút gọn tử thức và sau đó xem tử thức và mẫu thức có thừa số chung nào hay không để rút gọn tiếp.
  • Trong bài toán trên thì đã không quy đồng mẫu mà đơn giản biểu thức luôn.
  • Khi làm ra kết quả cuối cùng, ta kết luận giống như trên.

* Đối với dạng toán như câu b

  • Cách làm trên là điển hình, không bị trừ điểm.
  • Ngoài câu hỏi tìm x như trên thì người ta có thể hỏi: cho x là một hằng số nào đó bắt rút gọn P, giải bất phương trình, tìm giá trị lớn nhất nhỏ nhất, tìm x để P có giá trị nguyên, chứng minh một bất đẳng thức. Nhưng thường thì người ta sẽ hỏi như sau: tìm x để P có giá trị nào đó (như ví dụ nêu trên), cho x nhận một giá trị cụ thể để tính P.

B. CÁC BÀI TOÁN RÈN LUYỆN

Bài 1: Cho biểu thức: Tài liệu ôn thi vào lớp 10 môn Toán

a ) Rút gọn P. b ) Tìm giá trị của a để P < 1

Bài 2: Cho biểu thức: Tài liệu ôn thi vào lớp 10 môn Toán

a ) Rút gọn P. b ) Tìm giá trị của x để P < 0

Bài 3: Cho biểu thức: Tài liệu ôn thi vào lớp 10 môn Toán

a ) Rút gọn P. b ) Tìm những giá trị của x để P = 6/5.

VẤN ĐỀ 2. PHƯƠNG TRÌNH BẬC HAI MỘT ẨN

A. PHƯƠNG PHÁP GIẢI TOÁN

* Xét phương trình ax2 + bx + c = 0 với a ≠ 0, biệt thức Δ = b2 – 4 ac

Hệ thức Viet đối với phương trình bậc hai

– Nếu ac < 0 thì PT có 2 nghiệm phân biệt. - PT có nghiệm ↔ Δ ≥ 0. - PT có nghiệm kép ↔ Δ = 0 - PT có 2 nghiệm phân biệt ↔ Δ > 0

Tài liệu ôn thi vào lớp 10 môn Toán

* Từ những đặc thù quan trọng nêu trên, ta sẽ giải được một dạng toán về PT trùng phương. Xét phương trình : ax4 + bx2 + c = 0 ( i ) với a khác 0. Đặt t = x2 ≥ 0, ta có at2 + bt + c = 0 ( ii )

  • PT ( i ) có 4 nghiệm phân biệt khi và chỉ khi ( ii ) có 2 nghiệm dương phân biệt .
  • PT ( i ) có 3 nghiệm phân biệt khi và chỉ khi ( ii ) có 1 nghiệm dương và 1 nghiệm bằng 0 .
  • PT ( i ) có 2 nghiệm phân biệt khi và chỉ khi ( ii ) có duy nhất một nghiệm dương .
  • PT ( i ) có 1 nghiệm khi và chỉ khi ( ii ) có duy nhất một nghiệm là 0 .

Sau đây tất cả chúng ta sẽ xét 1 số ít bài toán thường gặp mang đặc thù nổi bật.

NHỮNG ĐIỂM CẦN LƯU Ý KHI GIẢI TOÁN

– Đối với những bài toán có tương quan đến hệ thức Viet, thì ta đặc biệt quan trọng chăm sóc đến điều kiện kèm theo để phương trình có nghiệm, tìm ra được x, ta phải so sánh điều kiện kèm theo để PT có nghiệm. – Ngoài những câu hỏi như trên ta còn hoàn toàn có thể hỏi : tìm m trải qua giải bất phương trình, tìm giá trị lớn nhất nhỏ nhất. – Đối với bài toán mà thông số của x2 không chứa tham số thì ta hoàn toàn có thể hỏi min, max trải qua hệ thức Viet. Chẳng hạn cho phương trình x2 – 2 ( m + 1 ) x + mét vuông – 1 = 0. Tìm m để phương trình có 2 nghiệm x1, x2. Khi đó tìm min của biểu thức P = x1. x2 + 2 ( x1 + x2 ) ta hoàn toàn có thể làm như sau :

Dễ dàng tìm được ĐK để PT có 2 nghiệm x1, x2 là m ≥ -1 (các em làm đúng kĩ năng như VD). Áp dụng Vi-et ta có x1 + x2 = 2m + 2, x1.x2 = m2 – 1
Khi đó ta có P = x1.x2 + 2(x1 + x2) = m2 -1 + 2(2m+2) = m2 + 4m + 3.
Đến đây có một sai lầm mà đa số HS mắc phải là phân tích m2 + 4m + 3 = (m+2)2 -1 ≥ -1. Và kết luận ngay min P = -1.

Đối với bài toán này, cách làm trên trọn vẹn sai. Dựa vào điều kiện kèm theo PT có nghiệm là m ≥ – 1, ta sẽ tìm min của P sao cho dấu bằng xảy ra khi m = – 1. Ta có P = mét vuông + 4 m + 3 = ( m + 1 ) ( m + 3 ). Với m ≥ – 1 suy ra m + 1 ≥ 0, m + 3 > 0 suy ra ( m + 1 ) ( m + 3 ) ≥ 0.

Vậy min P = 0, dấu bằng xảy ra khi m = -1 (thỏa mãn ĐK đã nêu).

Tài liệu ôn thi vào lớp 10 môn Toán được TimDapAnchia sẻ trên đây, giúp những bạn học viên có thêm tài liệu ôn tập sẵn sàng chuẩn bị tốt cho kì thi sắp tới. Chúc những bạn học tốt, đồng thời những bạn đừng quên tìm hiểu thêm thêm nhiều tài liệu chất lượng và có ích tại Tìm Đáp Án nhé …………………………………….. Ngoài Tài liệu ôn thi vào lớp 10 môn Toán. Mời những bạn học viên còn hoàn toàn có thể tìm hiểu thêm những đề thi học kì 2 lớp 9 những môn Toán, Văn, Anh, Lý, Địa, Sinh mà chúng tôi đã sưu tầm và tinh lọc. Với đề Thi vào lớp 10 năm 2020 này giúp những bạn rèn luyện thêm kỹ năng và kiến thức giải đề và làm bài tốt hơn. Chúc những bạn ôn thi tốt

Đánh giá bài viết