4/5 – ( 9 bầu chọn )

Công thức tính diện tích xung quanh

– Khái niệm

Diện tích xung quanh hình tròn trụ tròn chỉ gồm có diện tích quy hoạnh mặt xung quanh, bao quanh hình tròn trụ tròn, không gồm diện tích quy hoạnh hai đáy .
Diện tích hình tròn trụ thường được nhắc đến với 2 khái niệm : xung quanh và toàn phần .

  • Diện tích xung quanh hình trụ chỉ bao gồm diện tích mặt xung quanh, bao quanh hình trụ, không gồm diện tích hai đáy.
  • Diện tích toàn phần được tính là độ lớn của toàn bộ không gian hình chiếm giữ, bao gồm cả diện tích xung quanh và diện tích hai đáy tròn.

– Công thức

Công thức tính diện tích quy hoạnh xung quanh bằng chu vi đường tròn đáy nhân với chiều cao .
Sxq = 2. π. r. h

Trong đó:

– r : Bán kính hình tròn trụ .
– h : Chiều cao nối từ đáy tới đỉnh hình tròn trụ .
– π = 3.14159265359

– Ví dụ

Một hình tròn trụ tròn có nửa đường kính đáy r = 5 cm, chiều cao h = 7 cm. Tính diện tích quy hoạnh xung quanh hình tròn trụ đứng .

Hướng dẫn giải: Diện tích xung quanh của hình trụ tròn: Sxq = 2.π.r.h = 2π.5.7 = 70π = 219,8 (cm2).

Ví dụ 1: Một bóng đèn huỳnh quang dài 1,2m, đường kính của đường tròn đáy là 4cm, được đặt khít vào một ống giấy cứng dạng hình hộp (h.82). Tính diện tích phần giấy cứng dùng để làm một hộp.

Lời giải :
Diện tích phần giấy cứng cần tính chính là diện tích quy hoạnh xung quanh của một hình hộp có đáy là hình vuông vắn cạnh 4 cm, chiều cao 1,2 m = 120 cm .
Diện tích xung quanh của hình hộp chính là diện tích quy hoạnh bốn hình chữ nhật bằng nhau với chiều dài là 120 cm và chiều rộng 4 cm ::
Sxq = 4.4.120 = 1920 cm2

Ví dụ 2: Mô hình của một cái lọ thí nghiệm dạng hình trụ (không nắp) có bán kính đường tròn đáy 14cm,chiều cao 10cm. Tìm diện tích xung quanh cộng với diện tích một đáy

Lời giải :

Công thức tính diện tích toàn phần

– Giới thiệu

Diện tích toàn phần được tính là độ lớn của hàng loạt khoảng trống hình chiếm giữ, gồm có cả diện tích quy hoạnh xung quanh và diện tích quy hoạnh hai đáy tròn .

– Công thức

Công thức tính diện tích 2 đường tròn đáy

S2đ = 2 πr2 ( Sđ = πr2 )

Công thức tính diện tích toàn phần bằng diện tích xung quanh cộng với diện tích của 2 đáy.

Stp = Sxq + 2. Sđáy = 2. π. r2 + 2. π. r. h

Trong đó:

– r : Bán kính hình tròn trụ .
– h : Chiều cao hình tròn trụ .
– π = 3.14159265359

– Ví dụ

Một hình tròn trụ tròn có nửa đường kính đáy r = 4 cm, chiều cao h = 6 cm. Tính diện tích quy hoạnh toàn phần hình tròn trụ đứng .

Hướng dẫn giải: Stp = Sxq + 2.Sđáy= 2.π.r2 + 2.π.r.h = 2.π.42 + 2.π.4.6 = 32π + 48π = 80π (cm2).

Ví Dụ Cách Tính Diện Tích Hình Trụ :

Cho một hình trụ có bán kính đường tròn đáy là 6 cm , trong khi đó chiều cao nối từ đáy tới đỉnh hình trụ dày 8 cm. Hỏi diện tích xung quanh và diện tích toàn phần của hình trụ bằng bao nhiêu?

Theo công thức ta có bán đường tròn đáy r = 6 cm và chiều cao của hình trụ h = 8 cm . Suy ra ta có công thức tính diện tích xung quanh hình trụ và diện tích toàn phần hình trụ bằng:

– Diện tích xung quanh hình trụ = 2 x π x r x h = 2 x π x 6 x 8 = ~ 301 cm2

– Diện tích toàn phần hình trụ = 2 Π x R x (R + H) = 2 X π x 6 x (6 + 8) = ~ 527 cm2.

Ví dụ

Ví dụ 1 : Tính diện tích quy hoạnh toàn phần của hình tròn trụ, có độ dài đường tròn đáy là 10 cm, khoảng cách giữa 2 đáy là 6 cm .

Giải
Theo đề bài ta có : h = 6 cm ; 2 r = 10 cm => r = 5 cm .
Áp dụng công thức tính diện tích quy hoạnh toàn phần hình tròn trụ :
Stp = 2 πr ( r + h ) = 2 π. 5 ( 5 + 6 ) = 110 π ( cm2 )
=> Vậy diện tích quy hoạnh toàn phần của hình tròn trụ là 110 π ( cm2 )

Ví dụ 2: Tính diện tích toàn phần của hình trụ có chiều cao là 7cm và diện tích xung quanh bằng 310 (cm2)

Giải

Theo đề bài ta có : h = 7 ; Sxq = 310
Áp dụng công thức tính diện tích quy hoạnh xung quanh Sxq = 2 πrh
=> r = Sxq2πrh = 3102 π. 7 ≈ 7 cm
Vậy Sđ = πr2 = π. 72 = 49 π ≈ 154 cm2
=> Diện tích toàn phần của hình tròn trụ : Stp = 2. Sđ + Sxq = 2.154 + 310 = 618 cm2

Công thức tính thể tích hình trụ tròn

– Giới thiệu

Thể tích hình tròn trụ tròn là lượng khoảng trống mà nó chiếm .

– Công thức

Công thức tính thể tích hình tròn trụ tròn bằng diện tích quy hoạnh của mặt dưới nhân với chiều cao .
V = π. r2. h .

Trong đó:

– r : Bán kính hình tròn trụ .
– h : Chiều cao nối từ đáy tới đỉnh hình tròn trụ .
– π = 3.14159265359

– Ví dụ

Một hình tròn trụ tròn có nửa đường kính đáy r = 8 cm, chiều cao h = 6 cm. Tính diện tích quy hoạnh xung quanh, diện tích quy hoạnh toàn phần và thể tích của hình tròn trụ .

Hướng dẫn giải: Thể tích khối trụ: V = π.r2.h = π.64.6 = 384π (cm3).

Ví Dụ Cách Tính Diện Tích Hình Trụ:

Cho một lăng trụ bất kỳ có bán kính mặt đáy r = 4 cm , trong khi đó, chiều cao nối từ đỉnh của hình trụ xuống đáy hình trụ có độ dài h = 8 cm . Hỏi thể tích của hình trụ này bằng bao nhiêu?


Theo đó, ta vận dụng vào công thức tính thể tích hình tròn trụ và có : nửa đường kính dưới mặt đáy hình tròn trụ r = 4 cm và chiều cao hình tròn trụ h = 8 cm. Suy ra, ta có công thức tính thể tích hình tròn trụ như sau :

V = π x r2 x h = π x 42 x 8 = ~ 402 cm3

Ví dụ 2: Một hình trụ có chu vi đáy bằng 20 cm, diện tích xung quanh bằng 14 cm2. Tính chiều cao của hình trụ và thể tích của hình trụ.

Lời giải:

Diện tích xung quanh của hình tròn trụ : Sxq = chu vi đáy x chiều cao = 2 x π x r x h = 20 x h = 14
→ h = 0,7 ( cm )
Chu vi đáy bằng 20 cm → 2 x π x r = 20 → r ~ 3,18 cm
Thể tích của hình tròn trụ : V = π x r2 x h ~ 219,91 cm3

Ví dụ 3: Một hình trụ có diện tích toàn phần gấp 2 lần diện tích xung quanh biết bán kính đáy hình trụ là 6cm. Tính thể tích hình trụ.

Lời giải:

Diện tích toàn phần gấp 2 lần diện tích quy hoạnh xung quanh : Stp = 2S xq
→ 2 x 2 x π x r x h = 2 x π x r x ( r + h ) → 2 h = 6 + h → h = 6 ( cm )

Thể tích của hình trụ: V = π x r2 x h ~ 678,58 cm3

Hình trụ là gì?

Hình trụ là hình được số lượng giới hạn bởi hai đường tròn có đường kính bằng nhau và mặt trụ .

Hình trụ tròn là hình tròn trụ khi quay hình chữ nhật quanh trục cố định và thắt chặt, 2 đáy là hình tròn trụ bằng nhau và song song với nhau .

Hình trụ tròn là hình trụ có 2 đáy là hình tròn bằng nhau và song song với nhau. Hình trụ được sử dụng khá phổ biến trong các bài toán hình học từ căn bản đến phức tạp, trong đó công thức tính diện tích, thể tích hình trụ thường được sử dụng khác phổ biến. Nếu bạn đã biết cách tính diện tích và chu vi hình tròn thì cũng có thể dễ dàng suy luận ra các công thức tính thể tích, diện tích xung quanh cũng như diện tích toàn phần của hình trụ.

Đánh giá bài viết